L^{2}-Betti numbers

Wolfgang Lück

Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Bonn, 24. \& 26. April 2018

Outline

- We introduce L^{2}-Betti numbers.
- We present their basic properties and tools for their computation.
- We compute the L^{2}-Betti numbers of all 3-manifolds.
- We discuss the Atiyah Conjecture and the Singer Conjecture.

Basic motivation

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.
- Examples:

Classical notion	generalized version
Homology with coeffi- cients in \mathbb{Z}	Homology with coefficients in representations
Euler characteristic $\in \mathbb{Z}$	Walls finiteness obstruction in $K_{0}(\mathbb{Z} \pi)$
Lefschetz numbers $\in \mathbb{Z}$	Generalized Lefschetz invari- ants in $\mathbb{Z} \pi_{\phi}$
Signature $\in \mathbb{Z}$	Surgery invariants in $L_{*}(\mathbb{Z} G)$
-	torsion invariants

- We want to apply this principle to (classical) Betti numbers

$$
b_{n}(X):=\operatorname{dim}_{\mathbb{C}}\left(H_{n}(X ; \mathbb{C})\right)
$$

- Here are two naive attempts which fail:
- $\operatorname{dim}_{\mathbb{C}}\left(H_{n}(\widetilde{X} ; \mathbb{C})\right)$
- $\operatorname{dim}_{\mathbb{C} \pi}\left(H_{n}(\widetilde{X} ; \mathbb{C})\right)$, where $\operatorname{dim}_{\mathbb{C} \pi}(M)$ for a $\mathbb{C}[\pi]$-module could be chosen for instance as $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C} \otimes_{\mathbb{C} G} M\right)$.
- The problem is that $\mathbb{C} \pi$ is in general not Noetherian and $\operatorname{dim}_{\mathbb{C} \pi}(M)$ is in general not additive under exact sequences.
- We will use the following successful approach which is essentially due to Atiyah [1].

Group von Neumann algebras

- Throughout these lectures let G be a discrete group.
- Given a ring R and a group G, denote by $R G$ or $R[G]$ the group ring.
- Elements are formal sums $\sum_{g \in G} r_{g} \cdot g$, where $r_{g} \in R$ and only finitely many of the coefficients r_{g} are non-zero.
- Addition is given by adding the coefficients.
- Multiplication is given by the expression $g \cdot h:=g \cdot h$ for $g, h \in G$ (with two different meanings of •).
- In general $R G$ is a very complicated ring.
- Denote by $L^{2}(G)$ the Hilbert space of (formal) sums $\sum_{g \in G} \lambda_{g} \cdot g$ such that $\lambda_{g} \in \mathbb{C}$ and $\sum_{g \in G}\left|\lambda_{g}\right|^{2}<\infty$.

Definition

Define the group von Neumann algebra

$$
\mathcal{N}(G):=\mathcal{B}\left(L^{2}(G), L^{2}(G)\right)^{G}=\overline{\mathbb{C}}^{\text {weak }}
$$

to be the algebra of bounded G-equivariant operators $L^{2}(G) \rightarrow L^{2}(G)$. The von Neumann trace is defined by

$$
\operatorname{tr}_{\mathcal{N}(G)}: \mathcal{N}(G) \rightarrow \mathbb{C}, \quad f \mapsto\langle f(e), e\rangle_{L^{2}(G)}
$$

Example (Finite G)

If G is finite, then $\mathbb{C} G=L^{2}(G)=\mathcal{N}(G)$. The trace $\operatorname{tr}_{\mathcal{N}(G)}$ assigns to $\sum_{g \in G} \lambda_{g} \cdot g$ the coefficient λ_{e}.

Example $\left(G=\mathbb{Z}^{n}\right)$

Let G be \mathbb{Z}^{n}. Let $L^{2}\left(T^{n}\right)$ be the Hilbert space of L^{2}-integrable functions $T^{n} \rightarrow \mathbb{C}$. Fourier transform yields an isometric \mathbb{Z}^{n}-equivariant isomorphism

$$
L^{2}\left(\mathbb{Z}^{n}\right) \xlongequal{\cong} L^{2}\left(T^{n}\right) .
$$

Let $L^{\infty}\left(T^{n}\right)$ be the Banach space of essentially bounded measurable functions $f: T^{n} \rightarrow \mathbb{C}$. We obtain an isomorphism

$$
L^{\infty}\left(T^{n}\right) \xlongequal{\rightrightarrows} \mathcal{N}\left(\mathbb{Z}^{n}\right), \quad f \mapsto M_{f}
$$

where $M_{f}: L^{2}\left(T^{n}\right) \rightarrow L^{2}\left(T^{n}\right)$ is the bounded \mathbb{Z}^{n}-operator $g \mapsto g \cdot f$.
Under this identification the trace becomes

$$
\operatorname{tr}_{\mathcal{N}\left(\mathbb{Z}^{n}\right)}: L^{\infty}\left(T^{n}\right) \rightarrow \mathbb{C}, \quad f \mapsto \int_{T^{n}} f d \mu
$$

von Neumann dimension

Definition (Finitely generated Hilbert module)

A finitely generated Hilbert $\mathcal{N}(G)$-module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^{2}(G)^{n}$ for some $n \geq 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$-modules $f: V \rightarrow W$ is a bounded G-equivariant operator.

Definition (von Neumann dimension)

Let V be a finitely generated Hilbert $\mathcal{N}(G)$-module. Choose a G-equivariant projection $p: L^{2}(G)^{n} \rightarrow L^{2}(G)^{n}$ with $\operatorname{im}(p) \cong_{\mathcal{N}(G)} V$. Define the von Neumann dimension of V by

$$
\operatorname{dim}_{\mathcal{N}(G)}(V):=\operatorname{tr}_{\mathcal{N}(G)}(p):=\sum_{i=1}^{n} \operatorname{tr}_{\mathcal{N}(G)}\left(p_{i, i}\right) \quad \in \mathbb{R}^{\geq 0}
$$

Example (Finite G)

For finite G a finitely generated Hilbert $\mathcal{N}(G)$-module V is the same as a unitary finite dimensional G-representation and

$$
\operatorname{dim}_{\mathcal{N}(G)}(V)=\frac{1}{|G|} \cdot \operatorname{dim}_{\mathbb{C}}(V)
$$

Example $\left(G=\mathbb{Z}^{n}\right)$

Let G be \mathbb{Z}^{n}. Let $X \subset T^{n}$ be any measurable set with characteristic function $\chi_{x} \in L^{\infty}\left(T^{n}\right)$. Let $M_{\chi x}: L^{2}\left(T^{n}\right) \rightarrow L^{2}\left(T^{n}\right)$ be the \mathbb{Z}^{n}-equivariant unitary projection given by multiplication with χ_{x}. Its image V is a Hilbert $\mathcal{N}\left(\mathbb{Z}^{n}\right)$-module with

$$
\operatorname{dim}_{\mathcal{N}\left(\mathbb{Z}^{n}\right)}(V)=\operatorname{vol}(X)
$$

In particular each $r \in \mathbb{R}^{\geq 0}$ occurs as $r=\operatorname{dim}_{\mathcal{N}\left(\mathbb{Z}^{n}\right)}(V)$.

Definition (Weakly exact)

A sequence of Hilbert $\mathcal{N}(G)$-modules $U \xrightarrow{i} V \xrightarrow{p} W$ is weakly exact at V if the kernel $\operatorname{ker}(p)$ of p and the closure $\overline{\operatorname{im}(i)}$ of the image $\operatorname{im}(i)$ of i agree.

A map of Hilbert $\mathcal{N}(G)$-modules $f: V \rightarrow W$ is a weak isomorphism if it is injective and has dense image.

Example

The morphism of $\mathcal{N}(\mathbb{Z})$-Hilbert modules

$$
M_{z-1}: L^{2}(\mathbb{Z})=L^{2}\left(S^{1}\right) \rightarrow L^{2}(\mathbb{Z})=L^{2}\left(S^{1}\right), \quad u(z) \mapsto(z-1) \cdot u(z)
$$

is a weak isomorphism, but not an isomorphism.

Theorem (Main properties of the von Neumann dimension)

- Faithfulness

We have for a finitely generated Hilbert $\mathcal{N}(G)$-module V

$$
V=0 \Longleftrightarrow \operatorname{dim}_{\mathcal{N}(G)}(V)=0 ;
$$

(2) Additivity

If $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ is a weakly exact sequence of finitely generated Hilbert $\mathcal{N}(G)$-modules, then

$$
\operatorname{dim}_{\mathcal{N}(G)}(U)+\operatorname{dim}_{\mathcal{N}(G)}(W)=\operatorname{dim}_{\mathcal{N}(G)}(V) ;
$$

(0) Cofinality

Let $\left\{V_{i} \mid i \in I\right\}$ be a directed system of Hilbert $\mathcal{N}(G)$ - submodules of V, directed by inclusion. Then

$$
\operatorname{dim}_{\mathcal{N}(G)}\left(\overline{\bigcup_{i \in I} V_{i}}\right)=\sup \left\{\operatorname{dim}_{\mathcal{N}(G)}\left(V_{i}\right) \mid i \in I\right\} .
$$

L^{2}-homology and L^{2}-Betti numbers

Definition (L^{2}-homology and L^{2}-Betti numbers)

Let X be a connected $C W$-complex of finite type. Let \widetilde{X} be its universal covering and $\pi=\pi_{1}(M)$. Denote by $C_{*}(\widetilde{X})$ its cellular $\mathbb{Z} \pi$-chain complex.
Define its cellular L^{2}-chain complex to be the Hilbert $\mathcal{N}(\pi)$-chain complex

$$
C_{*}^{(2)}(\widetilde{X}):=L^{2}(\pi) \otimes_{\mathbb{Z} \pi} C_{*}(\widetilde{X})=\overline{C_{*}(\widetilde{X})} .
$$

Define its n-th L^{2}-homology to be the finitely generated Hilbert $\mathcal{N}(G)$-module

$$
H_{n}^{(2)}(\widetilde{X}):=\operatorname{ker}\left(c_{n}^{(2)}\right) / \overline{\operatorname{im}\left(c_{n+1}^{(2)}\right)} .
$$

Define its n-th L^{2}-Betti number

$$
b_{n}^{(2)}(\widetilde{X}):=\operatorname{dim}_{\mathcal{N}(\pi)}\left(H_{n}^{(2)}(\widetilde{X})\right) \quad \in \mathbb{R}^{\geq 0}
$$

Theorem (Main properties of L^{2}-Betti numbers)

Let X and Y be connected CW-complexes of finite type.

- Homotopy invariance

If X and Y are homotopy equivalent, then

$$
b_{n}^{(2)}(\widetilde{X})=b_{n}^{(2)}(\widetilde{Y})
$$

- Euler-Poincaré formula

We have

$$
\chi(X)=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}^{(2)}(\widetilde{X})
$$

- Poincaré duality

Let M be a closed manifold of dimension d. Then

$$
b_{n}^{(2)}(\widetilde{M})=b_{d-n}^{(2)}(\widetilde{M})
$$

Theorem (Continued)

- Künneth formula

$$
b_{n}^{(2)}(\widetilde{X \times Y})=\sum_{p+q=n} b_{p}^{(2)}(\widetilde{X}) \cdot b_{q}^{(2)}(\widetilde{Y}) ;
$$

- Zero-th L²-Betti number

We have

$$
b_{0}^{(2)}(\tilde{X})=\frac{1}{|\pi|} ;
$$

- Finite coverings

If $X \rightarrow Y$ is a finite covering with d sheets, then

$$
b_{n}^{(2)}(\tilde{X})=d \cdot b_{n}^{(2)}(\tilde{Y})
$$

Example (Finite π)

If π is finite then

$$
b_{n}^{(2)}(\widetilde{X})=\frac{b_{n}(\widetilde{X})}{|\pi|}
$$

Example (S^{1})

Consider the \mathbb{Z}-CW-complex $\widetilde{S^{1}}$. We get for $C_{*}^{(2)}\left(\widetilde{S^{1}}\right)$

$$
\ldots \rightarrow 0 \rightarrow L^{2}(\mathbb{Z}) \xrightarrow{M_{z-1}} L^{2}(\mathbb{Z}) \rightarrow 0 \rightarrow \ldots
$$

and hence $H_{n}^{(2)}\left(\widetilde{S^{1}}\right)=0$ and $b_{n}^{(2)}\left(\widetilde{S^{1}}\right)=0$ for all ≥ 0.

Example ($\pi=\mathbb{Z}^{d}$)

Let X be a connected $C W$-complex of finite type with fundamental group \mathbb{Z}^{d}. Let $\mathbb{C}\left[\mathbb{Z}^{d}\right]^{(0)}$ be the quotient field of the commutative integral domain $\mathbb{C}\left[\mathbb{Z}^{d}\right]$. Then

$$
b_{n}^{(2)}(\widetilde{X})=\operatorname{dim}_{\mathbb{C}\left[\mathbb{Z}^{d}\right]^{(0)}}\left(\mathbb{C}\left[\mathbb{Z}^{d}\right]^{(0)} \otimes_{\mathbb{Z}\left[\mathbb{Z}^{d}\right]} H_{n}(\widetilde{X})\right)
$$

Obviously this implies

$$
b_{n}^{(2)}(\widetilde{X}) \in \mathbb{Z}
$$

- For a discrete group G we can consider more generally any free finite G-CW-complex \bar{X} which is the same as a G-covering $\bar{X} \rightarrow X$ over a finite $C W$-complex X. (Actually proper finite $G-C W$-complex suffices.)
- The universal covering $p: \widetilde{X} \rightarrow X$ over a connected finite $C W$-complex is a special case for $G=\pi_{1}(X)$.
- Then one can apply the same construction to the finite free $\mathbb{Z} G$-chain complex $C_{*}(\bar{X})$. Thus we obtain the finitely generated Hilbert $\mathcal{N}(G)$-module

$$
H_{n}^{(2)}(\bar{X} ; \mathcal{N}(G)):=H_{n}^{(2)}\left(L^{2}(G) \otimes_{\mathbb{Z} G} C_{*}(\bar{X})\right)
$$

and define

$$
b_{n}^{(2)}(\bar{X} ; \mathcal{N}(G)):=\operatorname{dim}_{\mathcal{N}(G)}\left(H_{n}^{(2)}(\bar{X} ; \mathcal{N}(G))\right) \in \mathbb{R}^{\geq 0}
$$

- Let $i: H \rightarrow G$ be an injective group homomorphism and C_{*} be a finite free $\mathbb{Z} H$-chain complex.
- Then $i_{*} C_{*}:=\mathbb{Z} G \otimes_{\mathbb{Z} H} C_{*}$ is a finite free $\mathbb{Z} G$-chain complex.
- We have the following formula

$$
\begin{aligned}
\operatorname{dim}_{\mathcal{N}(G)}\left(H_{n}^{(2)}\left(L^{2}(G) \otimes_{\mathbb{Z} G} i_{*} C_{*}\right)\right) & \\
& =\operatorname{dim}_{\mathcal{N}(H)}\left(H_{n}^{(2)}\left(L^{2}(H) \otimes_{\mathbb{Z} H} C_{*}\right)\right)
\end{aligned}
$$

Lemma

If \bar{X} is a finite free H-CW-complex, then we get

$$
b_{n}^{(2)}\left(i_{*} \bar{X} ; \mathcal{N}(G)\right)=b_{n}^{(2)}(\bar{X} ; \mathcal{N}(H))
$$

- The corresponding statement is wrong if we drop the condition that i is injective.
- An example comes from $p: \mathbb{Z} \rightarrow\{1\}$ and $\widetilde{X}=\widetilde{S^{1}}$ since then $p_{*} \widetilde{S^{1}}=S^{1}$ and we have for $n=0,1$

$$
b_{n}^{(2)}\left(\widetilde{S^{1}} ; \mathcal{N}(\mathbb{Z})\right)=b_{n}^{(2)}\left(\widetilde{S^{1}}\right)=0
$$

and

$$
b_{n}^{(2)}\left(p_{*} \widetilde{S^{1}} ; \mathcal{N}(\{1\})\right)=b_{n}\left(S^{1}\right)=1
$$

The L^{2}-Mayer Vietoris sequence

Lemma

Let $0 \rightarrow C_{*}^{(2)} \xrightarrow{i^{(2)}} D_{*}^{(2)} \xrightarrow{p_{*}^{(2)}} E_{*}^{(2)} \rightarrow 0$ be a weakly exact sequence of finite Hilbert $\mathcal{N}(G)$-chain complexes.

Then there is a long weakly exact sequence of finitely generated Hilbert $\mathcal{N}(G)$-modules

$$
\begin{aligned}
& \cdots \xrightarrow{\delta_{n+1}^{(2)}} H_{n}^{(2)}\left(C_{*}^{(2)}\right) \xrightarrow{H_{n}^{(2)}\left(i_{*}^{(2)}\right)} H_{n}^{(2)}\left(D_{*}^{(2)}\right) \xrightarrow{H_{n}^{(2)}\left(p_{*}^{(2)}\right)} H_{n}^{(2)}\left(E_{*}^{(2)}\right) \\
& \stackrel{\delta_{n}^{(2)}}{\delta_{n-1}^{(2)}\left(C_{*}^{(2)}\right) \xrightarrow{H_{n-1}^{(2)}\left(i_{*}^{(2)}\right)} H_{n-1}^{(2)}\left(D_{*}^{(2)}\right)} \\
& \xrightarrow{H_{n-1}^{(2)}\left(p_{*}^{(2)}\right)} H_{n-1}^{(2)}\left(E_{*}^{(2)}\right) \xrightarrow{\delta_{n-1}^{(2)}} \cdots .
\end{aligned}
$$

Lemma

Let

be a cellular G-pushout of finite free G-CW-complexes, i.e., a G-pushout, where the upper arrow is an inclusion of a pair of free finite G-CW-complexes and the left vertical arrow is cellular.
Then we obtain a long weakly exact sequence of finitely generated Hilbert $\mathcal{N}(G)$-modules

$$
\begin{aligned}
\cdots & \rightarrow H_{n}^{(2)}\left(\overline{X_{0}} ; \mathcal{N}(G)\right) \rightarrow H_{n}^{(2)}\left(\overline{X_{1}} ; \mathcal{N}(G)\right) \oplus H_{n}^{(2)}\left(\overline{X_{2}} ; \mathcal{N}(G)\right) \\
& \rightarrow H_{n}^{(2)}(\bar{X} ; \mathcal{N}(G)) \rightarrow H_{n-1}^{(2)}\left(\overline{X_{0}} ; \mathcal{N}(G)\right) \\
& \rightarrow H_{n-1}^{(2)}\left(\overline{X_{1}} ; \mathcal{N}(G)\right) \oplus H_{n-1}^{(2)}\left(\overline{X_{2}} ; \mathcal{N}(G)\right) \rightarrow H_{n-1}^{(2)}(\bar{X} ; \mathcal{N}(G)) \rightarrow \cdots
\end{aligned}
$$

Proof.

- From the cellular G-pushout we obtain an exact sequence of $\mathbb{Z} G$-chain complexes

$$
0 \rightarrow C_{*}\left(\bar{X}_{0}\right) \rightarrow C_{*}\left(\bar{X}_{1}\right) \oplus C_{*}\left(\bar{X}_{2}\right) \rightarrow C_{*}(\bar{X}) \rightarrow 0
$$

- It induces an exact sequence of finite Hilbert $\mathcal{N}(G)$-chain complexes

$$
\begin{aligned}
0 \rightarrow L^{2}(G) \otimes_{\mathbb{Z} G} C_{*}\left(\bar{X}_{0}\right) \rightarrow L^{2}(G) \otimes_{\mathbb{Z} G} & C_{*}\left(\bar{X}_{1}\right) \oplus L^{2}(G) \otimes_{\mathbb{Z} G} C_{*}\left(\bar{X}_{2}\right) \\
& \rightarrow L^{2}(G) \otimes_{\mathbb{Z} G} C_{*}(\bar{X}) \rightarrow 0
\end{aligned}
$$

- Now apply the previous result.

Definition (L^{2}-acyclic)

A finite (not necessarily connected) $C W$-complex X is called L^{2}-acyclic, if $b_{n}^{(2)}(\widetilde{C})=0$ holds for every $C \in \pi_{0}(X)$ and $n \in \mathbb{Z}$.

- If X is a finite (not necessarily connected) $C W$-complex, we define

$$
b_{n}^{(2)}(\widetilde{X}):=\sum_{C \in \pi_{0}(X)} b_{n}^{(2)}(\widetilde{C}) \in \mathbb{R}^{\geq 0}
$$

Definition (π_{1}-injective)

A map $X \rightarrow Y$ is called π_{1}-injective, if for every choice of base point in X the induced map on the fundamental groups is injective.

- Consider a cellular pushout of finite CW-complexes

such that each of the maps $X_{i} \rightarrow X$ is π_{1}-injective.

Lemma

We get under the assumptions above for any $n \in \mathbb{Z}$

- If X_{0} is L^{2}-acyclic, then

$$
b_{n}^{(2)}(\widetilde{X})=b_{n}^{(2)}\left(\widetilde{X}_{1}\right)+b_{n}^{(2)}\left(\widetilde{X}_{2}\right) .
$$

- If X_{0}, X_{1} and X_{2} are L^{2}-cyclic, then X is L^{2}-acyclic.

Proof.

- Without loss of generality we can assume that X is connected.
- By pulling back the universal covering $\widetilde{X} \rightarrow X$ to X_{i}, we obtain a cellular $\pi=\pi_{1}(X)$-pushout

- Notice that \bar{X}_{i} is in general not the universal covering of X_{i}.

Proof continued.

- Because of the associated long exact L^{2}-sequence and the weak exactness of the von Neumann dimension, it suffices to show for $n \in \mathbb{Z}$ and $i=1,2$

$$
\begin{aligned}
H_{n}^{(2)}\left(\overline{X_{0}} ; \mathcal{N}(\pi)\right) & =0 ; \\
b_{n}^{(2)}\left(\overline{\left.X_{i} ; \mathcal{N}(\pi)\right)}=\right. & b_{n}^{(2)}\left(\widetilde{X}_{i}\right) .
\end{aligned}
$$

- This follows from π_{1}-injectivity, the lemma above about L^{2}-Betti numbers and induction, the assumption that X_{0} is L^{2}-acyclic, and the faithfulness of the von Neumann dimension.

Some computations and results

Example (Finite self coverings)

We get for a connected $C W$-complex X of finite type, for which there is a selfcovering $X \rightarrow X$ with d-sheets for some integer $d \geq 2$,

$$
b_{n}^{(2)}(\widetilde{X})=0 \quad \text { for } n \geq 0
$$

This implies for each connected $C W$-complex Y of finite type that $S^{1} \times Y$ is L^{2}-acyclic.

Example (L^{2}-Betti number of surfaces)

- Let F_{g} be the orientable closed surface of genus $g \geq 1$.
- Then $\left|\pi_{1}\left(F_{g}\right)\right|=\infty$ and hence $b_{0}^{(2)}\left(\widetilde{F_{g}}\right)=0$.
- By Poincaré duality $b_{2}^{(2)}\left(\widetilde{F_{g}}\right)=0$.
- Since $\operatorname{dim}\left(F_{g}\right)=2$, we get $b_{n}^{(2)}\left(\widetilde{F_{g}}\right)=0$ for $n \geq 3$.
- The Euler-Poincaré formula shows

$$
\begin{aligned}
& b_{1}^{(2)}\left(\widetilde{F_{g}}\right)=-\chi\left(F_{g}\right)=2 g-2 ; \\
& b_{n}^{(2)}\left(\widetilde{F}_{0}\right)=0 \text { for } n \neq 1 .
\end{aligned}
$$

Theorem (S ${ }^{1}$-actions, Lück)

Let M be a connected compact manifold with S^{1}-action. Suppose that for one (and hence all) $x \in X$ the map $S^{1} \rightarrow M, \quad z \mapsto z x$ is π_{1}-injective.

Then M is L^{2}-acyclic.

Proof.

Each of the S^{1}-orbits S^{1} / H in M satisfies $S^{1} / H \cong S^{1}$. Now use induction over the number of cells $S^{1} / H_{i} \times D^{n}$ and a previous result using π_{1}-injectivity and the vanishing of the L^{2}-Betti numbers of spaces of the shape $S^{1} \times X$.

Theorem (S^{1}-actions on aspherical manifolds, Lück)

Let M be an aspherical closed manifold with non-trivial S^{1}-action. Then
(1) The action has no fixed points;
(2) The map $S^{1} \rightarrow M, z \mapsto z x$ is π_{1}-injective for $x \in M$;
(3) $b_{n}^{(2)}(\tilde{M})=0$ for $n \geq 0$ and $\chi(M)=0$.

Proof.

The hard part is to show that the second assertion holds, since M is aspherical. Then the first assertion is obvious and the third assertion follows from the previous theorem.

Theorem (L²-Hodge - de Rham Theorem, Dodziuk [2])

Let M be a closed Riemannian manifold. Put

$$
\mathcal{H}_{(2)}^{n}(\widetilde{M})=\left\{\widetilde{\omega} \in \Omega^{n}(\widetilde{M}) \mid \widetilde{\Delta}_{n}(\widetilde{\omega})=0,\|\widetilde{\omega}\|_{L^{2}}<\infty\right\}
$$

Then integration defines an isomorphism of finitely generated Hilbert $\mathcal{N}(\pi)$-modules

$$
\mathcal{H}_{(2)}^{n}(\widetilde{M}) \stackrel{\cong}{\Rightarrow} H_{(2)}^{n}(\widetilde{M}) .
$$

Corollary (L^{2}-Betti numbers and heat kernels)

$$
b_{n}^{(2)}(\widetilde{M})=\lim _{t \rightarrow \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{R}}\left(e^{-t \widetilde{\Delta}_{n}}(\tilde{x}, \tilde{x})\right) d \mathrm{vol} .
$$

where $e^{-t \tilde{\Delta}_{n}}(\tilde{X}, \tilde{y})$ is the heat kernel on \widetilde{M} and \mathcal{F} is a fundamental domain for the π-action.

Theorem (hyperbolic manifolds, Dodziuk [3])

Let M be a hyperbolic closed Riemannian manifold of dimension d. Then:

$$
b_{n}^{(2)}(\widetilde{M})= \begin{cases}=0 & , \text { if } 2 n \neq d \\ >0 & \text {, if } 2 n=d\end{cases}
$$

Proof.

A direct computation shows that $\mathcal{H}_{(2)}^{p}\left(\mathbb{H}^{d}\right)$ is not zero if and only if $2 n=d$. Notice that M is hyperbolic if and only if \widetilde{M} is isometrically diffeomorphic to the standard hyperbolic space \mathbb{H}^{d}.

Corollary

Let M be a hyperbolic closed manifold of dimension d. Then
(1) If $d=2 m$ is even, then

$$
(-1)^{m} \cdot \chi(M)>0 ;
$$

(2) M carries no non-trivial S^{1}-action.

Proof.

(1) We get from the Euler-Poincaré formula and the last result

$$
(-1)^{m} \cdot \chi(M)=b_{m}^{(2)}(\widetilde{M})>0 .
$$

(2) We give the proof only for $d=2 m$ even. Then $b_{m}^{(2)}(\widetilde{M})>0$. Since $\widetilde{M}=\mathbb{H}^{d}$ is contractible, M is aspherical. Now apply a previous result about S^{1}-actions.

Theorem (3-manifolds, Lott-Lück [7])

Let the 3-manifold M be the connected sum $M_{1} \sharp \ldots \sharp M_{r}$ of (compact connected orientable) prime 3-manifolds M_{j}. Assume that $\pi_{1}(M)$ is infinite. Then

$$
\begin{aligned}
b_{1}^{(2)}(\widetilde{M})= & (r-1)-\sum_{j=1}^{r} \frac{1}{\left|\pi_{1}\left(M_{j}\right)\right|}-\chi(M) \\
& \quad+\left|\left\{C \in \pi_{0}(\partial M) \mid C \cong S^{2}\right\}\right| ; \\
b_{2}^{(2)}(\widetilde{M})= & (r-1)-\sum_{j=1}^{r} \frac{1}{\left|\pi_{1}\left(M_{j}\right)\right|} \\
& \quad+\left|\left\{C \in \pi_{0}(\partial M) \mid C \cong S^{2}\right\}\right| ; \\
b_{n}^{(2)}(\widetilde{M})= & 0 \quad \text { for } n \neq 1,2 .
\end{aligned}
$$

Proof.

- We have already explained why a closed hyperbolic 3-manifold is L^{2}-acyclic.
- One of the hard parts of the proof is to show that this is also true for any hyperbolic 3-manifold with incompressible toral boundary.
- Recall that these have finite volume.
- One has to introduce appropriate boundary conditions and Sobolev theory to write down the relevant analytic L^{2}-deRham complexes and L^{2}-Laplace operators.
- A key ingredient is the decomposition of such a manifold into its core and a finite number of cusps.

Proof continued.

- This can be used to write the L^{2}-Betti number as an integral over a fundamental domain \mathcal{F} of finite volume, where the integrand is given by data depending on $\mathbb{I \mathbb { H } ^ { 3 }}$ only:

$$
b_{n}^{(2)}(\widetilde{M})=\lim _{t \rightarrow \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{R}}\left(e^{-t \tilde{\Delta}_{n}}(\tilde{x}, \tilde{x})\right) d \mathrm{vol}
$$

- Since \mathbb{H}^{3} has a lot of symmetries, the integrand does not depend on \tilde{x} and is a constant C_{n} depending only on $\mathbb{1 H} \mathbb{H}^{3}$.
- Hence we get

$$
b_{n}^{(2)}(\tilde{M})=C_{n} \cdot \operatorname{vol}(M) .
$$

- From the closed case we deduce $C_{n}=0$.

Proof continued.

- Next we show that any Seifert manifold with infinite fundamental group is L^{2}-acyclic.
- This follows from the fact that such a manifold is finitely covered by the total space of an S^{1}-bundle $S^{1} \rightarrow E \rightarrow F$ over a surface with injective $\pi_{1}\left(S^{1}\right) \rightarrow \pi_{1}(E)$ using previous results.
- In the next step one shows that any irreducible 3-manifold M with incompressible or empty boundary and infinite fundamental group is L^{2}-acyclic.
- Recall that by the Thurston Geometrization Conjecture we can find a family of incompressible tori which decompose M into hyperbolic and Seifert pieces. The tori and all these pieces are L^{2}-acyclic.
- Now the claim follows from the L^{2}-Mayer Vietoris sequence.

Proof continued.

- In the next step one shows that any irreducible 3-manifold M with incompressible boundary and infinite fundamental group satisfies $b_{1}^{(2)}(\widetilde{M})=-\chi(M)$ and $b_{n}^{(2)}(\widetilde{M})=0$ for $n \neq 1$.
- This follows by considering $N=M \cup_{\partial M} M$ using the L^{2}-Mayer-Vietoris sequence, the already proved fact that N is L^{2}-acyclic and the previous computation of the L^{2}-Betti numbers for surfaces.
- In the next step one shows that any irreducible 3-manifold M with infinite fundamental group satisfies $b_{1}^{(2)}(\widetilde{M})=-\chi(M)$ and $b_{n}^{(2)}(\widetilde{M})=0$ for $n \neq 1$.

Proof continued.

- This is reduced by an iterated application of the Loop Theorem to the case where the boundary is incompressible. Namely, using the Loop Theorem one gets an embedded disk $D^{2} \subseteq M$ along which one can decompose M as $M_{1} \cup_{D^{2}} M_{2}$ or as $M_{1} \cup_{S^{0} \times D^{2}} D^{1} \times D^{2}$ depending on whether D^{2} is separating or not.
- Since the only prime 3-manifold that is not irreducible is $S^{1} \times S^{2}$, and every manifold M with finite fundamental group satisfies the result by a direct inspection of the Betti numbers of its universal covering, the claim is proved for all prime 3-manifolds.
- Finally one uses the L^{2}-Mayer Vietoris sequence to prove the claim in general using the prime decomposition.

Corollary

Let M be a 3-manifold. Then M is L^{2}-acyclic if and only if one of the following cases occur:

- M is an irreducible 3-manifold with infinite fundamental group whose boundary is empty or toral.
- M is $S^{1} \times S^{2}$ or $\mathbb{R} \mathbb{P}^{3} \sharp \mathbb{R} \mathbb{P}^{3}$.

Corollary

Let M be a compact n-manifold such that $n \leq 3$ and its fundamental group is torsionfree.
Then all its L^{2}-Betti numbers are integers.

Theorem (mapping tori, Lück [9])

Let $f: X \rightarrow X$ be a cellular selfhomotopy equivalence of a connected CW-complex X of finite type. Let T_{f} be the mapping torus. Then

$$
b_{n}^{(2)}\left(\widetilde{T}_{f}\right)=0 \quad \text { for } n \geq 0 .
$$

Proof.

- As $T_{f^{d}} \rightarrow T_{f}$ is up to homotopy a d-sheeted covering, we get

$$
b_{n}^{(2)}\left(\widetilde{T_{f}}\right)=\frac{b_{n}^{(2)}\left(\widetilde{T_{f^{d}}}\right)}{d}
$$

Proof continued.

- If $\beta_{n}(X)$ is the number of n-cells, then there is up to homotopy equivalence a $C W$-structure on $T_{f^{d}}$ with $\beta_{n}\left(T_{f^{d}}\right)=\beta_{n}(X)+\beta_{n-1}(X)$. We have

$$
\begin{aligned}
& b_{n}^{(2)}\left(\widetilde{T_{f^{d}}}\right)=\operatorname{dim}_{\mathcal{N}(G)}\left(H_{n}^{(2)}\left(C_{n}^{(2)}\left(\widetilde{T_{f^{d}}}\right)\right)\right) \\
& \leq \operatorname{dim}_{\mathcal{N}(G)}\left(C_{n}^{(2)}\left(\widetilde{T_{f^{d}}}\right)\right)=\beta_{n}\left(T_{f^{d}}\right) .
\end{aligned}
$$

- This implies for all $d \geq 1$

$$
b_{n}^{(2)}\left(\widetilde{T}_{f}\right) \leq \frac{\beta_{n}(X)+\beta_{n-1}(X)}{d} .
$$

- Taking the limit for $d \rightarrow \infty$ yields the claim.
- Let M be an irreducible manifold M with infinite fundamental group and empty or incompressible toral boundary which is not a closed graph manifold.
- Agol proved the Virtually Fibering Conjecture for such M.
- This implies by the result above that M is L^{2}-acyclic.

The fundamental square and the Atiyah Conjecture

Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)

Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_{1}(M) \cong G$ we have for every $n \geq 0$

$$
b_{n}^{(2)}(\widetilde{M}) \in \mathbb{Z}
$$

- All computations presented above support the Atiyah Conjecture.
- The fundamental square is given by the following inclusions of rings

- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- $\mathcal{D}(G)$ is the division closure of $\mathbb{Z} G$ in $\mathcal{U}(G)$, i.e., the smallest subring of $\mathcal{U}(G)$ containing $\mathbb{Z} G$ such that every element in $\mathcal{D}(G)$, which is a unit in $\mathcal{U}(G)$, is already a unit in $\mathcal{D}(G)$ itself.
- If G is finite, its is given by

- If $G=\mathbb{Z}$, it is given by

- If G is elementary amenable torsionfree, then $\mathcal{D}(G)$ can be identified with the Ore localization of $\mathbb{Z} G$ with respect to the multiplicatively closed subset of non-zero elements.
- In general the Ore localization does not exist and in these cases $\mathcal{D}(G)$ is the right replacement.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

- A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix $A \in M_{m, n}(\mathbb{Z} G)$ the von Neumann dimension

$$
\operatorname{dim}_{\mathcal{N}(G)}\left(\operatorname{ker}\left(r_{A}: \mathcal{N}(G)^{m} \rightarrow \mathcal{N}(G)^{n}\right)\right)
$$

is an integer. In this case this dimension agrees with

$$
\operatorname{dim}_{\mathcal{D}(G)}\left(\operatorname{ker}\left(r_{A}: \mathcal{D}(G)^{m} \rightarrow \mathcal{D}(G)^{n}\right)\right)
$$

- The general version above is equivalent to the one stated before if G is finitely presented.
- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero F the group ring $F G$ has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an L^{2}-Betti number which is irrational, see Austin, Grabowski [4].

Theorem (Linnell [6], Schick [11])

- Let \mathcal{C} be the smallest class of groups which contains all free groups, is closed under extensions with elementary amenable groups as quotients and directed unions. Then every torsionfree group G which belongs to \mathcal{C} satisfies the Atiyah Conjecture.
(2) If G is residually torsionfree elementary amenable, then it satisfies the Atiyah Conjecture.

Strategy to prove the Atiyah Conjecture

(1) Show that $K_{0}(\mathbb{C}) \rightarrow K_{0}(\mathbb{C} G)$ is surjective (This is implied by the Farrell-Jones Conjecture)
(2) Show that $K_{0}(\mathbb{C} G) \rightarrow K_{0}(\mathcal{D}(G))$ is surjective.
(3) Show that $\mathcal{D}(G)$ is semisimple.

Approximation

- In general there are no relations between the Betti numbers $b_{n}(X)$ and the L^{2}-Betti numbers $b_{n}^{(2)}(\widetilde{X})$ for a connected $C W$-complex X of finite type except for the Euler Poincaré formula

$$
\chi(X)=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}^{(2)}(\widetilde{X})=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}(X)
$$

- Given an integer $I \geq 1$ and a sequence $r_{1}, r_{2}, \ldots, r_{l}$ of non-negative rational numbers, we can construct a group G such that $B G$ is of finite type and

$$
\begin{array}{lll}
b_{n}^{(2)}(B G)=r_{n} & & \text { for } 1 \leq n \leq I \\
b_{n}^{(2)}(B G) & =0 & \\
\text { for } I+1 \leq n \\
b_{n}(B G) & =0 & \text { for } n \geq 1
\end{array}
$$

- For any sequence s_{1}, s_{2}, \ldots of non-negative integers there is a $C W$-complex X of finite type such that for $n \geq 1$

$$
\begin{aligned}
b_{n}(X) & =s_{n} \\
b_{n}^{(2)}(\widetilde{X}) & =0
\end{aligned}
$$

Theorem (Approximation Theorem, Lück [8])

Let X be a connected CW-complex of finite type. Suppose that π is residually finite, i.e., there is a nested sequence

$$
\pi=G_{0} \supset G_{1} \supset G_{2} \supset \ldots
$$

of normal subgroups of finite index with $\cap_{i \geq 1} G_{i}=\{1\}$. Let X_{i} be the finite $\left[\pi: G_{i}\right]$-sheeted covering of X associated to G_{i}.

Then for any such sequence $\left(G_{i}\right)_{i \geq 1}$

$$
b_{n}^{(2)}(\widetilde{X})=\lim _{i \rightarrow \infty} \frac{b_{n}\left(X_{i}\right)}{\left[G: G_{i}\right]}
$$

- Ordinary Betti numbers are not multiplicative under finite coverings, whereas the L^{2}-Betti numbers are. With the expression

$$
\lim _{i \rightarrow \infty} \frac{b_{n}\left(X_{i}\right)}{\left[G: G_{i}\right]},
$$

we try to force the Betti numbers to be multiplicative by a limit process.

- The theorem above says that L^{2}-Betti numbers are asymptotic Betti numbers. It was conjectured by Gromov.

Applications to deficiency and signature

Definition (Deficiency)

Let G be a finitely presented group. Define its deficiency

$$
\operatorname{defi}(G):=\max \{g(P)-r(P)\}
$$

where P runs over all presentations P of G and $g(P)$ is the number of generators and $r(P)$ is the number of relations of a presentation P.

Example

- The free group F_{g} has the obvious presentation $\left\langle s_{1}, s_{2}, \ldots s_{g} \mid \emptyset\right\rangle$ and its deficiency is realized by this presentation, namely $\operatorname{defi}\left(F_{g}\right)=g$.
- If G is a finite group, $\operatorname{defi}(G) \leq 0$.
- The deficiency of a cyclic group \mathbb{Z} / n is 0 , the obvious presentation $\left\langle s \mid s^{n}\right\rangle$ realizes the deficiency.
- The deficiency of $\mathbb{Z} / n \times \mathbb{Z} / n$ is -1 , the obvious presentation $\left\langle s, t \mid s^{n}, t^{n},[s, t]\right\rangle$ realizes the deficiency.

Example (deficiency and free products)

The deficiency is not additive under free products by the following example due to Hog-Lustig-Metzler. The group

$$
(\mathbb{Z} / 2 \times \mathbb{Z} / 2) *(\mathbb{Z} / 3 \times \mathbb{Z} / 3)
$$

has the obvious presentation

$$
\left\langle s_{0}, t_{0}, s_{1}, t_{1} \mid s_{0}^{2}=t_{0}^{2}=\left[s_{0}, t_{0}\right]=s_{1}^{3}=t_{1}^{3}=\left[s_{1}, t_{1}\right]=1\right\rangle
$$

One may think that its deficiency is -2 . However, it turns out that its deficiency is -1 realized by the following presentation

$$
\left\langle s_{0}, t_{0}, s_{1}, t_{1} \mid s_{0}^{2}=1,\left[s_{0}, t_{0}\right]=t_{0}^{2}, s_{1}^{3}=1,\left[s_{1}, t_{1}\right]=t_{1}^{3}, t_{0}^{2}=t_{1}^{3}\right\rangle
$$

Lemma

Let G be a finitely presented group. Then

$$
\operatorname{defi}(G) \leq 1-|G|^{-1}+b_{1}^{(2)}(G)-b_{2}^{(2)}(G)
$$

Proof.

We have to show for any presentation P that

$$
g(P)-r(P) \leq 1-b_{0}^{(2)}(G)+b_{1}^{(2)}(G)-b_{2}^{(2)}(G)
$$

Let X be a $C W$-complex realizing P. Then

$$
\chi(X)=1-g(P)+r(P)=b_{0}^{(2)}(\widetilde{X})+b_{1}^{(2)}(\widetilde{X})-b_{2}^{(2)}(\widetilde{X})
$$

Since the classifying map $X \rightarrow B G$ is 2-connected, we get

$$
\begin{aligned}
& b_{n}^{(2)}(\widetilde{X})=b_{n}^{(2)}(G) \quad \text { for } n=0,1 ; \\
& b_{2}^{(2)}(\widetilde{X}) \geq b_{2}^{(2)}(G) .
\end{aligned}
$$

Theorem (Deficiency and extensions, Lück)

Let $1 \rightarrow H \xrightarrow{i} G \xrightarrow{q} K \rightarrow 1$ be an exact sequence of infinite groups. Suppose that G is finitely presented and H is finitely generated. Then:
(1) $b_{1}^{(2)}(G)=0$;
(2) defi $(G) \leq 1$;
(0) Let M be a closed oriented 4-manifold with G as fundamental group. Then

$$
|\operatorname{sign}(M)| \leq \chi(M) .
$$

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$
b_{n}^{(2)}(\widetilde{M})=0 \quad \text { if } 2 n \neq \operatorname{dim}(M)
$$

If M is a closed Riemannian manifold with negative sectional curvature, then

$$
b_{n}^{(2)}(\widetilde{M}) \begin{cases}=0 & \text { if } 2 n \neq \operatorname{dim}(M) \\ >0 & \text { if } 2 n=\operatorname{dim}(M)\end{cases}
$$

- The computations presented above do support the Singer Conjecture.
- Under certain negative pinching conditions the Singer Conjecture has been proved by Ballmann-Brüning, Donnelly-Xavier, Jost-Xin.
- The Singer Conjecture gives also evidence for the Atiyah Conjecture.
- Because of the Euler-Poincaré formula

$$
\chi(M)=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}^{(2)}(\widetilde{M})
$$

the Singer Conjecture implies the following conjecture provided that M has non-positive sectional curvature.

Conjecture (Hopf Conjecture)

If M is a closed Riemannian manifold of even dimension with sectional curvature $\sec (M)$, then

$$
\begin{array}{rlll}
(-1)^{\operatorname{dim}(M) / 2} \cdot \chi(M) & >0 & \text { if } \sec (M) & <0 ; \\
(-1)^{\operatorname{dim}(M) / 2} \cdot \chi(M) & \geq 0 & \text { if } \sec (M) \leq 0 ; \\
\chi(M) & =0 & \text { if } \sec (M)=0 ; \\
\chi(M) & \geq 0 & \text { if } \sec (M) \geq 0 ; \\
\chi(M) & >0 & \text { if } \sec (M)>0 .
\end{array}
$$

Definition (Kähler hyperbolic manifold)

A Kähler hyperbolic manifold is a closed connected Kähler manifold M whose fundamental form ω is \widetilde{d} (bounded), i.e. its lift $\widetilde{\omega} \in \Omega^{2}(\widetilde{M})$ to the universal covering can be written as $d(\eta)$ holds for some bounded 1-form $\eta \in \Omega^{1}(\widetilde{M})$.

Theorem (Gromov [5])

Let M be a closed Kähler hyperbolic manifold of complex dimension c. Then

$$
\begin{aligned}
b_{n}^{(2)}(\widetilde{M}) & =0 \quad \text { if } n \neq c ; \\
b_{n}^{(2)}(\widetilde{M}) & >0 ; \\
(-1)^{m} \cdot \chi(M) & >0 ;
\end{aligned}
$$

- Let M be a closed Kähler manifold. It is Kähler hyperbolic if it admits some Riemannian metric with negative sectional curvature, or, if, generally $\pi_{1}(M)$ is word-hyperbolic and $\pi_{2}(M)$ is trivial.
- A consequence of the theorem above is that any Kähler hyperbolic manifold is a projective algebraic variety.

M．F．Atiyah．
Elliptic operators，discrete groups and von Neumann algebras． Astérisque，32－33：43－72， 1976.

目 J．Dodziuk．
de Rham－Hodge theory for L^{2}－cohomology of infinite coverings．
Topology，16（2）：157－165， 1977.
圊 J．Dodziuk．
L^{2} harmonic forms on rotationally symmetric Riemannian manifolds．
Proc．Amer．Math．Soc．，77（3）：395－400， 1979.
用 Ł．Grabowski．
On Turing dynamical systems and the Atiyah problem． Invent．Math．，198（1）：27－69， 2014.

目 M．Gromov．
Kähler hyperbolicity and L_{2}－Hodge theory．
J．Differential Geom．，33（1）：263－292， 1991.

P．A．Linnell．
Division rings and group von Neumann algebras．
Forum Math．，5（6）：561－576， 1993.
國 J．Lott and W．Lück．
L^{2}－topological invariants of 3－manifolds．
Invent．Math．，120（1）：15－60， 1995.
國 W．Lück．
Approximating L^{2}－invariants by their finite－dimensional analogues． Geom．Funct．Anal．，4（4）：455－481， 1994.
固 W．Lück．
L^{2}－Betti numbers of mapping tori and groups．
Topology，33（2）：203－214， 1994.
目 W．Lück．
L^{2}－Invariants：Theory and Applications to Geometry and
K－Theory，volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete．3．Folge．A Series of Modern Surveys in

Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2002.
圊 T. Schick. Integrality of L^{2}-Betti numbers. Math. Ann., 317(4):727-750, 2000.

