L²-Betti numbers

Wolfgang Lück
Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de
http://131.220.77.52/lueck/

Bonn, 24. & 26. April 2018

Outline

- We introduce L2-Betti numbers.
- We present their basic properties and tools for their computation.
- We compute the L^2 -Betti numbers of all 3-manifolds.
- We discuss the Atiyah Conjecture and the Singer Conjecture.

Basic motivation

 Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.

• Examples:

Classical notion	generalized version
Homology with coeffi-	Homology with coefficients in
cients in $\mathbb Z$	representations
Euler characteristic $\in \mathbb{Z}$	Walls finiteness obstruction in
	$K_0(\mathbb{Z}\pi)$
Lefschetz numbers $\in \mathbb{Z}$	Generalized Lefschetz invari-
	ants in $\mathbb{Z}\pi_\phi$
Signature $\in \mathbb{Z}$	Surgery invariants in $L_*(\mathbb{Z}G)$
_	torsion invariants

We want to apply this principle to (classical) Betti numbers

$$b_n(X) := \dim_{\mathbb{C}}(H_n(X; \mathbb{C})).$$

- Here are two naive attempts which fail:
 - $\dim_{\mathbb{C}}(H_n(\widetilde{X};\mathbb{C}))$
 - $\dim_{\mathbb{C}\pi}(H_n(\widetilde{X};\mathbb{C}))$, where $\dim_{\mathbb{C}\pi}(M)$ for a $\mathbb{C}[\pi]$ -module could be chosen for instance as $\dim_{\mathbb{C}}(\mathbb{C}\otimes_{\mathbb{C}G}M)$.
- The problem is that $\mathbb{C}\pi$ is in general not Noetherian and $\dim_{\mathbb{C}\pi}(M)$ is in general not additive under exact sequences.
- We will use the following successful approach which is essentially due to Atiyah [1].

12-Retti numbers

Group von Neumann algebras

- Throughout these lectures let G be a discrete group.
- Given a ring R and a group G, denote by RG or R[G] the group ring.
- Elements are formal sums $\sum_{g \in G} r_g \cdot g$, where $r_g \in R$ and only finitely many of the coefficients r_g are non-zero.
- Addition is given by adding the coefficients.
- Multiplication is given by the expression $g \cdot h := g \cdot h$ for $g, h \in G$ (with two different meanings of ·).
- In general RG is a very complicated ring.

• Denote by $L^2(G)$ the Hilbert space of (formal) sums $\sum_{g \in G} \lambda_g \cdot g$ such that $\lambda_g \in \mathbb{C}$ and $\sum_{g \in G} |\lambda_g|^2 < \infty$.

Definition

Define the group von Neumann algebra

$$\mathcal{N}(G) := \mathcal{B}(L^2(G), L^2(G))^G = \overline{\mathbb{C}G}^{\text{weak}}$$

to be the algebra of bounded *G*-equivariant operators $L^2(G) \to L^2(G)$. The von Neumann trace is defined by

$$\operatorname{\mathsf{tr}}_{\mathcal{N}(G)} \colon \mathcal{N}(G) o \mathbb{C}, \quad f \mapsto \langle f(e), e \rangle_{L^2(G)}.$$

Example (Finite G)

If G is finite, then $\mathbb{C}G = L^2(G) = \mathcal{N}(G)$. The trace $\operatorname{tr}_{\mathcal{N}(G)}$ assigns to $\sum_{g \in G} \lambda_g \cdot g$ the coefficient λ_e .

Example ($G = \mathbb{Z}^n$)

Let G be \mathbb{Z}^n . Let $L^2(T^n)$ be the Hilbert space of L^2 -integrable functions $T^n \to \mathbb{C}$. Fourier transform yields an isometric \mathbb{Z}^n -equivariant isomorphism

$$L^2(\mathbb{Z}^n) \xrightarrow{\cong} L^2(T^n).$$

Let $L^{\infty}(T^n)$ be the Banach space of essentially bounded measurable functions $f \colon T^n \to \mathbb{C}$. We obtain an isomorphism

$$L^{\infty}(T^n) \xrightarrow{\cong} \mathcal{N}(\mathbb{Z}^n), \quad f \mapsto M_f$$

where $M_f \colon L^2(T^n) \to L^2(T^n)$ is the bounded \mathbb{Z}^n -operator $g \mapsto g \cdot f$.

Under this identification the trace becomes

$$\operatorname{tr}_{\mathcal{N}(\mathbb{Z}^n)} \colon L^\infty(\mathcal{T}^n) o \mathbb{C}, \quad f \mapsto \int_{\mathcal{T}^n} f d\mu.$$

von Neumann dimension

Definition (Finitely generated Hilbert module)

A finitely generated Hilbert $\mathcal{N}(G)$ -module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^2(G)^n$ for some $n \geq 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$ -modules $f: V \to W$ is a bounded G-equivariant operator.

Definition (von Neumann dimension)

Let V be a finitely generated Hilbert $\mathcal{N}(G)$ -module. Choose a G-equivariant projection $p\colon L^2(G)^n\to L^2(G)^n$ with $\mathrm{im}(p)\cong_{\mathcal{N}(G)}V$. Define the von Neumann dimension of V by

$$\dim_{\mathcal{N}(G)}(V) := \operatorname{tr}_{\mathcal{N}(G)}(p) := \sum_{i=1}^n \operatorname{tr}_{\mathcal{N}(G)}(p_{i,i}) \in \mathbb{R}^{\geq 0}.$$

Example (Finite G)

For finite G a finitely generated Hilbert $\mathcal{N}(G)$ -module V is the same as a unitary finite dimensional G-representation and

$$\dim_{\mathcal{N}(G)}(V) = \frac{1}{|G|} \cdot \dim_{\mathbb{C}}(V).$$

Example ($G = \mathbb{Z}^n$)

Let G be \mathbb{Z}^n . Let $X\subset T^n$ be any measurable set with characteristic function $\chi_X\in L^\infty(T^n)$. Let $M_{\chi_X}\colon L^2(T^n)\to L^2(T^n)$ be the \mathbb{Z}^n -equivariant unitary projection given by multiplication with χ_X . Its image V is a Hilbert $\mathcal{N}(\mathbb{Z}^n)$ -module with

$$\dim_{\mathcal{N}(\mathbb{Z}^n)}(V) = \operatorname{vol}(X).$$

In particular each $r \in \mathbb{R}^{\geq 0}$ occurs as $r = \dim_{\mathcal{N}(\mathbb{Z}^n)}(V)$.

Definition (Weakly exact)

A sequence of Hilbert $\mathcal{N}(G)$ -modules $U \xrightarrow{i} V \xrightarrow{p} W$ is weakly exact at V if the kernel $\ker(p)$ of p and the closure $\operatorname{im}(i)$ of the image $\operatorname{im}(i)$ of i agree.

A map of Hilbert $\mathcal{N}(G)$ -modules $f \colon V \to W$ is a weak isomorphism if it is injective and has dense image.

Example

The morphism of $\mathcal{N}(\mathbb{Z})$ -Hilbert modules

$$M_{z-1}: L^2(\mathbb{Z}) = L^2(S^1) \to L^2(\mathbb{Z}) = L^2(S^1), \quad u(z) \mapsto (z-1) \cdot u(z)$$

is a weak isomorphism, but not an isomorphism.

Theorem (Main properties of the von Neumann dimension)

Faithfulness

We have for a finitely generated Hilbert $\mathcal{N}(G)$ -module V

$$V = 0 \Longleftrightarrow \dim_{\mathcal{N}(G)}(V) = 0;$$

Additivity

If $0 \to U \to V \to W \to 0$ is a weakly exact sequence of finitely generated Hilbert $\mathcal{N}(G)$ -modules, then

$$\dim_{\mathcal{N}(G)}(U) + \dim_{\mathcal{N}(G)}(W) = \dim_{\mathcal{N}(G)}(V);$$

Cofinality

Let $\{V_i \mid i \in I\}$ be a directed system of Hilbert $\mathcal{N}(G)$ - submodules of V, directed by inclusion. Then

$$\dim_{\mathcal{N}(G)} \left(\overline{\bigcup_{i \in I} V_i} \right) = \sup \{ \dim_{\mathcal{N}(G)} (V_i) \mid i \in I \}.$$

L²-homology and L²-Betti numbers

Definition (L^2 -homology and L^2 -Betti numbers)

Let X be a connected CW-complex of finite type. Let \widetilde{X} be its universal covering and $\pi=\pi_1(M)$. Denote by $C_*(\widetilde{X})$ its cellular $\mathbb{Z}\pi$ -chain complex.

Define its cellular L^2 -chain complex to be the Hilbert $\mathcal{N}(\pi)$ -chain complex

$$C_*^{(2)}(\widetilde{X}) := L^2(\pi) \otimes_{\mathbb{Z}\pi} C_*(\widetilde{X}) = \overline{C_*(\widetilde{X})}.$$

Define its *n*-th L^2 -homology to be the finitely generated Hilbert $\mathcal{N}(G)$ -module

$$H_n^{(2)}(\widetilde{X}) := \ker(c_n^{(2)}) / \overline{\operatorname{im}(c_{n+1}^{(2)})}.$$

Define its *n*-th *L*²-Betti number

$$b_n^{(2)}(\widetilde{X}) := \dim_{\mathcal{N}(\pi)} \left(H_n^{(2)}(\widetilde{X})
ight) \quad \in \mathbb{R}^{\geq 0}.$$

Theorem (Main properties of L²-Betti numbers)

Let X and Y be connected CW-complexes of finite type.

Homotopy invariance
 If X and Y are homotopy equivalent, then

$$b_n^{(2)}(\widetilde{X})=b_n^{(2)}(\widetilde{Y});$$

• Euler-Poincaré formula We have

$$\chi(X) = \sum_{n>0} (-1)^n \cdot b_n^{(2)}(\widetilde{X});$$

Poincaré duality

Let M be a closed manifold of dimension d. Then

$$b_n^{(2)}(\widetilde{M}) = b_{d-n}^{(2)}(\widetilde{M});$$

Theorem (Continued)

Künneth formula

$$b_n^{(2)}(\widetilde{X\times Y}) = \sum_{p+q=n} b_p^{(2)}(\widetilde{X}) \cdot b_q^{(2)}(\widetilde{Y});$$

Zero-th L²-Betti number
 We have

$$b_0^{(2)}(\widetilde{X}) = \frac{1}{|\pi|};$$

Finite coverings

If $X \rightarrow Y$ is a finite covering with d sheets, then

$$b_n^{(2)}(\widetilde{X}) = d \cdot b_n^{(2)}(\widetilde{Y}).$$

Example (Finite π)

If π is finite then

$$b_n^{(2)}(\widetilde{X})=\frac{b_n(X)}{|\pi|}.$$

Example (S1)

Consider the \mathbb{Z} -CW-complex \widetilde{S}^1 . We get for $C_*^{(2)}(\widetilde{S}^1)$

$$\ldots \to 0 \to L^2(\mathbb{Z}) \xrightarrow{M_{z-1}} L^2(\mathbb{Z}) \to 0 \to \ldots$$

and hence $H_n^{(2)}(\widetilde{S}^1) = 0$ and $b_n^{(2)}(\widetilde{S}^1) = 0$ for all ≥ 0 .

Example $(\pi = \mathbb{Z}^d)$

Let X be a connected CW-complex of finite type with fundamental group \mathbb{Z}^d . Let $\mathbb{C}[\mathbb{Z}^d]^{(0)}$ be the quotient field of the commutative integral domain $\mathbb{C}[\mathbb{Z}^d]$. Then

$$b_n^{(2)}(\widetilde{X}) = \dim_{\mathbb{C}[\mathbb{Z}^d]^{(0)}} \left(\mathbb{C}[\mathbb{Z}^d]^{(0)} \otimes_{\mathbb{Z}[\mathbb{Z}^d]} H_n(\widetilde{X}) \right)$$

Obviously this implies

$$b_n^{(2)}(\widetilde{X}) \in \mathbb{Z}.$$

- For a discrete group G we can consider more generally any free finite G-CW-complex X̄ which is the same as a G-covering X̄ → X over a finite CW-complex X. (Actually proper finite G-CW-complex suffices.)
- The universal covering $p \colon \widetilde{X} \to X$ over a connected finite CW-complex is a special case for $G = \pi_1(X)$.
- Then one can apply the same construction to the finite free $\mathbb{Z}G$ -chain complex $C_*(\overline{X})$. Thus we obtain the finitely generated Hilbert $\mathcal{N}(G)$ -module

$$H_n^{(2)}(\overline{X}; \mathcal{N}(G)) := H_n^{(2)}(L^2(G) \otimes_{\mathbb{Z}G} C_*(\overline{X})),$$

and define

$$\textbf{\textit{b}}_{n}^{(2)}(\overline{X};\mathcal{N}(\textit{\textbf{G}})):=\text{dim}_{\mathcal{N}(\textit{\textbf{G}})}(\textit{H}_{n}^{(2)}(\overline{X};\mathcal{N}(\textit{\textbf{G}})))\in\mathbb{R}^{\geq 0}.$$

- Let $i: H \to G$ be an injective group homomorphism and C_* be a finite free $\mathbb{Z}H$ -chain complex.
- Then $i_*C_* := \mathbb{Z}G \otimes_{\mathbb{Z}H} C_*$ is a finite free $\mathbb{Z}G$ -chain complex.
- We have the following formula

$$\dim_{\mathcal{N}(G)} \left(H_n^{(2)}(L^2(G) \otimes_{\mathbb{Z}G} i_* C_*) \right)$$

$$= \dim_{\mathcal{N}(H)} \left(H_n^{(2)}(L^2(H) \otimes_{\mathbb{Z}H} C_*) \right).$$

Lemma

If \overline{X} is a finite free H-CW-complex, then we get

$$b_n^{(2)}(i_*\overline{X};\mathcal{N}(G))=b_n^{(2)}(\overline{X};\mathcal{N}(H)).$$

- The corresponding statement is wrong if we drop the condition that i is injective.
- An example comes from $p: \mathbb{Z} \to \{1\}$ and $\widetilde{X} = \widetilde{S}^1$ since then $p_*\widetilde{S}^1 = S^1$ and we have for n = 0, 1

$$b_n^{(2)}(\widetilde{S^1};\mathcal{N}(\mathbb{Z}))=b_n^{(2)}(\widetilde{S^1})=0,$$

and

$$b_n^{(2)}(p_*\widetilde{S^1}; \mathcal{N}(\{1\})) = b_n(S^1) = 1.$$

The L²-Mayer Vietoris sequence

Lemma

Let $0 \to C_*^{(2)} \xrightarrow{i_*^{(2)}} D_*^{(2)} \xrightarrow{p_*^{(2)}} E_*^{(2)} \to 0$ be a weakly exact sequence of finite Hilbert $\mathcal{N}(G)$ -chain complexes.

Then there is a long weakly exact sequence of finitely generated Hilbert $\mathcal{N}(G)$ -modules

$$\cdots \xrightarrow{\delta_{n+1}^{(2)}} H_{n}^{(2)}(C_{*}^{(2)}) \xrightarrow{H_{n}^{(2)}(i_{*}^{(2)})} H_{n}^{(2)}(D_{*}^{(2)}) \xrightarrow{H_{n}^{(2)}(p_{*}^{(2)})} H_{n}^{(2)}(E_{*}^{(2)})$$

$$\xrightarrow{\delta_{n}^{(2)}} H_{n-1}^{(2)}(C_{*}^{(2)}) \xrightarrow{H_{n-1}^{(2)}(i_{*}^{(2)})} H_{n-1}^{(2)}(D_{*}^{(2)})$$

$$\xrightarrow{H_{n-1}^{(2)}(p_{*}^{(2)})} H_{n-1}^{(2)}(E_{*}^{(2)}) \xrightarrow{\delta_{n-1}^{(2)}} \cdots .$$

Lemma

Let

be a cellular G-pushout of finite free G-CW-complexes, i.e., a G-pushout, where the upper arrow is an inclusion of a pair of free finite G-CW-complexes and the left vertical arrow is cellular.

Then we obtain a long weakly exact sequence of finitely generated Hilbert $\mathcal{N}(G)$ -modules

$$\begin{split} \cdots &\to H_n^{(2)}(\overline{X_0}; \mathcal{N}(G)) \to H_n^{(2)}(\overline{X_1}; \mathcal{N}(G)) \oplus H_n^{(2)}(\overline{X_2}; \mathcal{N}(G)) \\ &\to H_n^{(2)}(\overline{X}; \mathcal{N}(G)) \to H_{n-1}^{(2)}(\overline{X_0}; \mathcal{N}(G)) \\ &\to H_{n-1}^{(2)}(\overline{X_1}; \mathcal{N}(G)) \oplus H_{n-1}^{(2)}(\overline{X_2}; \mathcal{N}(G)) \to H_{n-1}^{(2)}(\overline{X}; \mathcal{N}(G)) \to \cdots . \end{split}$$

Proof.

• From the cellular G-pushout we obtain an exact sequence of $\mathbb{Z}G$ -chain complexes

$$0 \to \textit{\textbf{C}}_*(\overline{X}_0) \to \textit{\textbf{C}}_*(\overline{X}_1) \oplus \textit{\textbf{C}}_*(\overline{X}_2) \to \textit{\textbf{C}}_*(\overline{X}) \to 0.$$

• It induces an exact sequence of finite Hilbert $\mathcal{N}(G)$ -chain complexes

$$\begin{split} 0 \to L^2(G) \otimes_{\mathbb{Z} G} C_*(\overline{X}_0) &\to L^2(G) \otimes_{\mathbb{Z} G} C_*(\overline{X}_1) \oplus L^2(G) \otimes_{\mathbb{Z} G} C_*(\overline{X}_2) \\ &\to L^2(G) \otimes_{\mathbb{Z} G} C_*(\overline{X}) \to 0. \end{split}$$

Now apply the previous result.

Definition (L^2 -acyclic)

A finite (not necessarily connected) CW-complex X is called L^2 -acyclic, if $b_n^{(2)}(\widetilde{C})=0$ holds for every $C\in\pi_0(X)$ and $n\in\mathbb{Z}$.

• If X is a finite (not necessarily connected) CW-complex, we define

$$b_n^{(2)}(\widetilde{X}) := \sum_{C \in \pi_0(X)} b_n^{(2)}(\widetilde{C}) \in \mathbb{R}^{\geq 0}.$$

Definition (π_1 -injective)

A map $X \to Y$ is called π_1 -injective, if for every choice of base point in X the induced map on the fundamental groups is injective.

Consider a cellular pushout of finite CW-complexes

such that each of the maps $X_i \to X$ is π_1 -injective.

Lemma

We get under the assumptions above for any $n \in \mathbb{Z}$

• If X_0 is L^2 -acyclic, then

$$b_n^{(2)}(\widetilde{X}) = b_n^{(2)}(\widetilde{X}_1) + b_n^{(2)}(\widetilde{X}_2).$$

• If X_0 , X_1 and X_2 are L^2 -cyclic, then X is L^2 -acyclic.

Proof.

- Without loss of generality we can assume that *X* is connected.
- By pulling back the universal covering $\widetilde{X} \to X$ to X_i , we obtain a cellular $\pi = \pi_1(X)$ -pushout

• Notice that \overline{X}_i is in general not the universal covering of X_i .

Proof continued.

• Because of the associated long exact L^2 -sequence and the weak exactness of the von Neumann dimension, it suffices to show for $n \in \mathbb{Z}$ and i = 1, 2

$$H_n^{(2)}(\overline{X_0}; \mathcal{N}(\pi)) = 0;$$

$$b_n^{(2)}(\overline{X_i}; \mathcal{N}(\pi)) = b_n^{(2)}(\widetilde{X_i}).$$

• This follows from π_1 -injectivity, the lemma above about L^2 -Betti numbers and induction, the assumption that X_0 is L^2 -acyclic, and the faithfulness of the von Neumann dimension.

L2-Betti numbers

Some computations and results

Example (Finite self coverings)

We get for a connected CW-complex X of finite type, for which there is a selfcovering $X \to X$ with d-sheets for some integer $d \ge 2$,

$$b_n^{(2)}(\widetilde{X})=0$$
 for $n\geq 0$.

This implies for each connected *CW*-complex *Y* of finite type that $S^1 \times Y$ is L^2 -acyclic.

Example (L^2 -Betti number of surfaces)

- Let F_g be the orientable closed surface of genus $g \ge 1$.
- Then $|\pi_1(F_g)| = \infty$ and hence $b_0^{(2)}(\widetilde{F_g}) = 0$.
- By Poincaré duality $b_2^{(2)}(\widetilde{F_g})=0$.
- Since dim $(F_g)=2$, we get $b_n^{(2)}(\widetilde{F_g})=0$ for $n\geq 3$.
- The Euler-Poincaré formula shows

$$b_1^{(2)}(\widetilde{F_g}) = -\chi(F_g) = 2g - 2;$$

 $b_n^{(2)}(\widetilde{F_0}) = 0 \text{ for } n \neq 1.$

Theorem (S¹-actions, Lück)

Let M be a connected compact manifold with S^1 -action. Suppose that for one (and hence all) $x \in X$ the map $S^1 \to M$, $z \mapsto zx$ is π_1 -injective.

Then M is L^2 -acyclic.

Proof.

Each of the S^1 -orbits S^1/H in M satisfies $S^1/H\cong S^1$. Now use induction over the number of cells $S^1/H_i\times D^n$ and a previous result using π_1 -injectivity and the vanishing of the L^2 -Betti numbers of spaces of the shape $S^1\times X$.

Theorem (S¹-actions on aspherical manifolds, Lück)

Let M be an aspherical closed manifold with non-trivial S^1 -action. Then

- The action has no fixed points;
- 2 The map $S^1 \to M$, $z \mapsto zx$ is π_1 -injective for $x \in M$;
- **3** $b_n^{(2)}(\widetilde{M}) = 0$ for $n \ge 0$ and $\chi(M) = 0$.

Proof.

The hard part is to show that the second assertion holds, since M is aspherical. Then the first assertion is obvious and the third assertion follows from the previous theorem.

Theorem (L²-Hodge - de Rham Theorem, Dodziuk [2])

Let M be a closed Riemannian manifold. Put

$$\mathcal{H}^n_{(2)}(\widetilde{M}) = \{\widetilde{\omega} \in \Omega^n(\widetilde{M}) \mid \widetilde{\Delta}_n(\widetilde{\omega}) = 0, \ ||\widetilde{\omega}||_{L^2} < \infty \}$$

Then integration defines an isomorphism of finitely generated Hilbert $\mathcal{N}(\pi)$ -modules

$$\mathcal{H}^n_{(2)}(\widetilde{M}) \xrightarrow{\cong} H^n_{(2)}(\widetilde{M}).$$

Corollary (L²-Betti numbers and heat kernels)

$$b_n^{(2)}(\widetilde{M}) = \lim_{t \to \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{R}}(e^{-t\widetilde{\Delta}_n}(\widetilde{x},\widetilde{x})) \ d\text{vol} \ .$$

where $e^{-t\widetilde{\Delta}_n}(\tilde{x}, \tilde{y})$ is the heat kernel on \widetilde{M} and \mathcal{F} is a fundamental domain for the π -action.

Theorem (hyperbolic manifolds, Dodziuk [3])

Let M be a hyperbolic closed Riemannian manifold of dimension d. Then:

$$b_n^{(2)}(\widetilde{M}) = \begin{cases} = 0 & \text{, if } 2n \neq d; \\ > 0 & \text{, if } 2n = d. \end{cases}$$

Proof.

A direct computation shows that $\mathcal{H}^p_{(2)}(\mathbb{H}^d)$ is not zero if and only if 2n=d. Notice that M is hyperbolic if and only if \widetilde{M} is isometrically diffeomorphic to the standard hyperbolic space \mathbb{H}^d .

Corollary

Let M be a hyperbolic closed manifold of dimension d. Then

• If d = 2m is even, then

$$(-1)^m \cdot \chi(M) > 0;$$

M carries no non-trivial S¹-action.

Proof.

(1) We get from the Euler-Poincaré formula and the last result

$$(-1)^m \cdot \chi(M) = b_m^{(2)}(\widetilde{M}) > 0.$$

(2) We give the proof only for d=2m even. Then $b_m^{(2)}(\widetilde{M})>0$. Since $\widetilde{M}=\mathbb{H}^d$ is contractible, M is aspherical. Now apply a previous result about S^1 -actions.

Theorem (3-manifolds, Lott-Lück [7])

Let the 3-manifold M be the connected sum $M_1\sharp \dots \sharp M_r$ of (compact connected orientable) prime 3-manifolds M_j . Assume that $\pi_1(M)$ is infinite. Then

$$b_{1}^{(2)}(\widetilde{M}) = (r-1) - \sum_{j=1}^{r} \frac{1}{|\pi_{1}(M_{j})|} - \chi(M) + \left| \{ C \in \pi_{0}(\partial M) \mid C \cong S^{2} \} \right|;$$

$$b_{2}^{(2)}(\widetilde{M}) = (r-1) - \sum_{j=1}^{r} \frac{1}{|\pi_{1}(M_{j})|} + \left| \{ C \in \pi_{0}(\partial M) \mid C \cong S^{2} \} \right|;$$

$$b_{n}^{(2)}(\widetilde{M}) = 0 \quad \text{for } n \neq 1, 2.$$

L2-Betti numbers

Proof.

- We have already explained why a closed hyperbolic 3-manifold is L²-acyclic.
- One of the hard parts of the proof is to show that this is also true for any hyperbolic 3-manifold with incompressible toral boundary.
- Recall that these have finite volume.
- One has to introduce appropriate boundary conditions and Sobolev theory to write down the relevant analytic L^2 -deRham complexes and L^2 -Laplace operators.
- A key ingredient is the decomposition of such a manifold into its core and a finite number of cusps.

• This can be used to write the L^2 -Betti number as an integral over a fundamental domain \mathcal{F} of finite volume, where the integrand is given by data depending on \mathbb{IH}^3 only:

$$b_n^{(2)}(\widetilde{M}) = \lim_{t o \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{R}}(e^{-t\widetilde{\Delta}_n}(\widetilde{x},\widetilde{x})) \ d\mathsf{vol} \,.$$

- Since \mathbb{H}^3 has a lot of symmetries, the integrand does not depend on \tilde{x} and is a constant C_n depending only on \mathbb{IH}^3 .
- Hence we get

$$b_n^{(2)}(\widetilde{M}) = C_n \cdot \text{vol}(M).$$

• From the closed case we deduce $C_n = 0$.

- Next we show that any Seifert manifold with infinite fundamental group is L²-acyclic.
- This follows from the fact that such a manifold is finitely covered by the total space of an S^1 -bundle $S^1 \to E \to F$ over a surface with injective $\pi_1(S^1) \to \pi_1(E)$ using previous results.
- In the next step one shows that any irreducible 3-manifold M with incompressible or empty boundary and infinite fundamental group is L^2 -acyclic.
- Recall that by the Thurston Geometrization Conjecture we can find a family of incompressible tori which decompose M into hyperbolic and Seifert pieces. The tori and all these pieces are L^2 -acyclic.
- Now the claim follows from the L²-Mayer Vietoris sequence.

- In the next step one shows that any irreducible 3-manifold M with incompressible boundary and infinite fundamental group satisfies $b_1^{(2)}(\widetilde{M}) = -\chi(M)$ and $b_n^{(2)}(\widetilde{M}) = 0$ for $n \neq 1$.
- This follows by considering $N = M \cup_{\partial M} M$ using the L^2 -Mayer-Vietoris sequence, the already proved fact that N is L^2 -acyclic and the previous computation of the L^2 -Betti numbers for surfaces.
- In the next step one shows that any irreducible 3-manifold M with infinite fundamental group satisfies $b_1^{(2)}(\widetilde{M}) = -\chi(M)$ and $b_n^{(2)}(\widetilde{M}) = 0$ for $n \neq 1$.

- This is reduced by an iterated application of the Loop Theorem to the case where the boundary is incompressible. Namely, using the Loop Theorem one gets an embedded disk $D^2 \subseteq M$ along which one can decompose M as $M_1 \cup_{D^2} M_2$ or as $M_1 \cup_{S^0 \times D^2} D^1 \times D^2$ depending on whether D^2 is separating or not.
- Since the only prime 3-manifold that is not irreducible is $S^1 \times S^2$, and every manifold M with finite fundamental group satisfies the result by a direct inspection of the Betti numbers of its universal covering, the claim is proved for all prime 3-manifolds.
- Finally one uses the L^2 -Mayer Vietoris sequence to prove the claim in general using the prime decomposition.

Corollary

Let M be a 3-manifold. Then M is L^2 -acyclic if and only if one of the following cases occur:

- M is an irreducible 3-manifold with infinite fundamental group whose boundary is empty or toral.
- M is $S^1 \times S^2$ or $\mathbb{RP}^3 \sharp \mathbb{RP}^3$.

Corollary

Let M be a compact n-manifold such that $n \le 3$ and its fundamental group is torsionfree.

Then all its L^2 -Betti numbers are integers.

Theorem (mapping tori, Lück [9])

Let $f: X \to X$ be a cellular selfhomotopy equivalence of a connected CW-complex X of finite type. Let T_f be the mapping torus. Then

$$b_n^{(2)}(\widetilde{T}_f)=0$$
 for $n\geq 0$.

Proof.

• As $T_{f^d} \to T_f$ is up to homotopy a d-sheeted covering, we get

$$b_n^{(2)}(\widetilde{T}_f)=rac{b_n^{(2)}(\widetilde{T_{f^d}})}{d}.$$

• If $\beta_n(X)$ is the number of *n*-cells, then there is up to homotopy equivalence a *CW*-structure on T_{f^d} with $\beta_n(T_{f^d}) = \beta_n(X) + \beta_{n-1}(X)$. We have

$$\begin{split} b_n^{(2)}(\widetilde{T_{f^d}}) &= \dim_{\mathcal{N}(G)} \left(H_n^{(2)}(C_n^{(2)}(\widetilde{T_{f^d}})) \right) \\ &\leq \dim_{\mathcal{N}(G)} \left(C_n^{(2)}(\widetilde{T_{f^d}}) \right) = \beta_n(T_{f^d}). \end{split}$$

• This implies for all d > 1

$$b_n^{(2)}(\widetilde{T}_f) \leq \frac{\beta_n(X) + \beta_{n-1}(X)}{d}.$$

• Taking the limit for $d \to \infty$ yields the claim.

- Let M be an irreducible manifold M with infinite fundamental group and empty or incompressible toral boundary which is not a closed graph manifold.
- Agol proved the Virtually Fibering Conjecture for such M.
- This implies by the result above that M is L^2 -acyclic.

The fundamental square and the Atiyah Conjecture

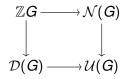
Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)

Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_1(M) \cong G$ we have for every $n \geq 0$

$$b_n^{(2)}(\widetilde{M}) \in \mathbb{Z}.$$

All computations presented above support the Atiyah Conjecture.

 The fundamental square is given by the following inclusions of rings



- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- $\mathcal{D}(G)$ is the division closure of $\mathbb{Z}G$ in $\mathcal{U}(G)$, i.e., the smallest subring of $\mathcal{U}(G)$ containing $\mathbb{Z}G$ such that every element in $\mathcal{D}(G)$, which is a unit in $\mathcal{U}(G)$, is already a unit in $\mathcal{D}(G)$ itself.

• If G is finite, its is given by

$$\mathbb{Z}G \longrightarrow \mathbb{C}G$$
 \downarrow id
 $\mathbb{Q}G \longrightarrow \mathbb{C}G$

• If $G = \mathbb{Z}$, it is given by

$$\mathbb{Z}[\mathbb{Z}] \longrightarrow L^{\infty}(\mathcal{S}^1) \ igg| \ \mathbb{Q}[\mathbb{Z}]^{(0)} \longrightarrow L(\mathcal{S}^1)$$

- If G is elementary amenable torsionfree, then $\mathcal{D}(G)$ can be identified with the Ore localization of $\mathbb{Z}G$ with respect to the multiplicatively closed subset of non-zero elements.
- In general the Ore localization does not exist and in these cases $\mathcal{D}(G)$ is the right replacement.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

• A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix $A \in M_{m,n}(\mathbb{Z}G)$ the von Neumann dimension

$$\dim_{\mathcal{N}(G)} (\ker(r_A : \mathcal{N}(G)^m \to \mathcal{N}(G)^n))$$

is an integer. In this case this dimension agrees with

$$\dim_{\mathcal{D}(G)} (\ker(r_A : \mathcal{D}(G)^m \to \mathcal{D}(G)^n)).$$

 The general version above is equivalent to the one stated before if G is finitely presented.

- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero F the group ring FG has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an L²-Betti number which is irrational, see Austin, Grabowski [4].

Theorem (Linnell [6], Schick [11])

- ◆ Let C be the smallest class of groups which contains all free groups, is closed under extensions with elementary amenable groups as quotients and directed unions. Then every torsionfree group G which belongs to C satisfies the Atiyah Conjecture.
- ② If G is residually torsionfree elementary amenable, then it satisfies the Atiyah Conjecture.

Strategy to prove the Atiyah Conjecture

- Show that $K_0(\mathbb{C}) \to K_0(\mathbb{C}G)$ is surjective (This is implied by the Farrell-Jones Conjecture)
- ② Show that $K_0(\mathbb{C}G) \to K_0(\mathcal{D}(G))$ is surjective.
- **3** Show that $\mathcal{D}(G)$ is semisimple.

Approximation

• In general there are no relations between the Betti numbers $b_n(X)$ and the L^2 -Betti numbers $b_n^{(2)}(\widetilde{X})$ for a connected CW-complex X of finite type except for the Euler Poincaré formula

$$\chi(X) = \sum_{n>0} (-1)^n \cdot b_n^{(2)}(\widetilde{X}) = \sum_{n>0} (-1)^n \cdot b_n(X).$$

• Given an integer $l \ge 1$ and a sequence $r_1, r_2, ..., r_l$ of non-negative rational numbers, we can construct a group G such that BG is of finite type and

$$b_n^{(2)}(BG) = r_n$$
 for $1 \le n \le I$;
 $b_n^{(2)}(BG) = 0$ for $l + 1 \le n$;
 $b_n(BG) = 0$ for $n \ge 1$.

• For any sequence s_1, s_2, \ldots of non-negative integers there is a CW-complex X of finite type such that for $n \ge 1$

$$b_n(X) = s_n;$$

 $b_n^{(2)}(\widetilde{X}) = 0.$

Theorem (Approximation Theorem, Lück [8])

Let X be a connected CW-complex of finite type. Suppose that π is residually finite, i.e., there is a nested sequence

$$\pi = G_0 \supset G_1 \supset G_2 \supset \dots$$

of normal subgroups of finite index with $\cap_{i\geq 1}G_i=\{1\}$. Let X_i be the finite $[\pi:G_i]$ -sheeted covering of X associated to G_i .

Then for any such sequence $(G_i)_{i\geq 1}$

$$b_n^{(2)}(\widetilde{X}) = \lim_{i \to \infty} \frac{b_n(X_i)}{[G:G_i]}.$$

 Ordinary Betti numbers are not multiplicative under finite coverings, whereas the L²-Betti numbers are. With the expression

$$\lim_{i\to\infty}\frac{b_n(X_i)}{[G:G_i]},$$

we try to force the Betti numbers to be multiplicative by a limit process.

 The theorem above says that L²-Betti numbers are asymptotic Betti numbers. It was conjectured by Gromov.

Applications to deficiency and signature

Definition (Deficiency)

Let G be a finitely presented group. Define its deficiency

$$\mathsf{defi}(G) := \mathsf{max}\{g(P) - r(P)\}\$$

where P runs over all presentations P of G and g(P) is the number of generators and r(P) is the number of relations of a presentation P.

Example

- The free group F_g has the obvious presentation $\langle s_1, s_2, \dots s_g \mid \emptyset \rangle$ and its deficiency is realized by this presentation, namely $\text{defi}(F_g) = g$.
- If G is a finite group, $defi(G) \le 0$.
- The deficiency of a cyclic group \mathbb{Z}/n is 0, the obvious presentation $\langle s \mid s^n \rangle$ realizes the deficiency.
- The deficiency of $\mathbb{Z}/n \times \mathbb{Z}/n$ is -1, the obvious presentation $\langle s, t \mid s^n, t^n, [s, t] \rangle$ realizes the deficiency.

Example (deficiency and free products)

The deficiency is not additive under free products by the following example due to Hog-Lustig-Metzler. The group

$$(\mathbb{Z}/2\times\mathbb{Z}/2)*(\mathbb{Z}/3\times\mathbb{Z}/3)$$

has the obvious presentation

$$\langle s_0, t_0, s_1, t_1 \mid s_0^2 = t_0^2 = [s_0, t_0] = s_1^3 = t_1^3 = [s_1, t_1] = 1 \rangle$$

One may think that its deficiency is -2. However, it turns out that its deficiency is -1 realized by the following presentation

$$\langle s_0, t_0, s_1, t_1 \mid s_0^2 = 1, [s_0, t_0] = t_0^2, s_1^3 = 1, [s_1, t_1] = t_1^3, t_0^2 = t_1^3 \rangle.$$

Lemma

Let G be a finitely presented group. Then

$$defi(G) \leq 1 - |G|^{-1} + b_1^{(2)}(G) - b_2^{(2)}(G).$$

Proof.

We have to show for any presentation P that

$$g(P) - r(P) \leq 1 - b_0^{(2)}(G) + b_1^{(2)}(G) - b_2^{(2)}(G).$$

Let X be a CW-complex realizing P. Then

$$\chi(X) = 1 - g(P) + r(P) = b_0^{(2)}(\widetilde{X}) + b_1^{(2)}(\widetilde{X}) - b_2^{(2)}(\widetilde{X}).$$

Since the classifying map $X \rightarrow BG$ is 2-connected, we get

$$b_n^{(2)}(\widetilde{X}) = b_n^{(2)}(G)$$
 for $n = 0, 1$;
 $b_2^{(2)}(\widetilde{X}) \ge b_2^{(2)}(G)$.

Theorem (Deficiency and extensions, Lück)

Let $1 \to H \xrightarrow{i} G \xrightarrow{q} K \to 1$ be an exact sequence of infinite groups. Suppose that G is finitely presented and H is finitely generated. Then:

- $b_1^{(2)}(G) = 0;$
- ② $defi(G) \leq 1$;
- Let M be a closed oriented 4-manifold with G as fundamental group. Then

$$|\operatorname{sign}(M)| \leq \chi(M).$$

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$b_n^{(2)}(\widetilde{M}) = 0$$
 if $2n \neq \dim(M)$.

If M is a closed Riemannian manifold with negative sectional curvature, then

$$b_n^{(2)}(\widetilde{M})$$
 $\begin{cases} = 0 & \text{if } 2n \neq \dim(M); \\ > 0 & \text{if } 2n = \dim(M). \end{cases}$

- The computations presented above do support the Singer Conjecture.
- Under certain negative pinching conditions the Singer Conjecture has been proved by Ballmann-Brüning, Donnelly-Xavier, Jost-Xin.
- The Singer Conjecture gives also evidence for the Atiyah Conjecture.

Because of the Euler-Poincaré formula

$$\chi(M) = \sum_{n \geq 0} (-1)^n \cdot b_n^{(2)}(\widetilde{M})$$

the Singer Conjecture implies the following conjecture provided that M has non-positive sectional curvature.

Conjecture (Hopf Conjecture)

If M is a closed Riemannian manifold of even dimension with sectional curvature sec(M), then

Definition (Kähler hyperbolic manifold)

A Kähler hyperbolic manifold is a closed connected Kähler manifold M whose fundamental form ω is \widetilde{d} (bounded), i.e. its lift $\widetilde{\omega} \in \Omega^2(\widetilde{M})$ to the universal covering can be written as $d(\eta)$ holds for some bounded 1-form $\eta \in \Omega^1(M)$.

Theorem (Gromov [5])

Let M be a closed Kähler hyperbolic manifold of complex dimension c. Then

$$b_n^{(2)}(\widetilde{M}) = 0 \quad \text{if } n \neq c;$$

$$b_n^{(2)}(\widetilde{M}) > 0;$$

$$(-1)^m \cdot \chi(M) > 0;$$

12-Retti numbers

65 / 66

- Let M be a closed Kähler manifold. It is Kähler hyperbolic if it admits some Riemannian metric with negative sectional curvature, or, if, generally $\pi_1(M)$ is word-hyperbolic and $\pi_2(M)$ is trivial.
- A consequence of the theorem above is that any Kähler hyperbolic manifold is a projective algebraic variety.

M. F. Atiyah.

Elliptic operators, discrete groups and von Neumann algebras. *Astérisque*, 32-33:43–72, 1976.

J. Dodziuk.

de Rham-Hodge theory for L^2 -cohomology of infinite coverings. *Topology*, 16(2):157–165, 1977.

J. Dodziuk.

 L^2 harmonic forms on rotationally symmetric Riemannian manifolds.

Proc. Amer. Math. Soc., 77(3):395-400, 1979.

L. Grabowski.

On Turing dynamical systems and the Atiyah problem. *Invent. Math.*, 198(1):27–69, 2014.

M. Gromov.

Kähler hyperbolicity and L_2 -Hodge theory.

J. Differential Geom., 33(1):263-292, 1991.

P. A. Linnell.

Division rings and group von Neumann algebras.

Forum Math., 5(6):561–576, 1993.

J. Lott and W. Lück.

*L*²-topological invariants of 3-manifolds. *Invent. Math.*, 120(1):15–60, 1995.

W. Lück.

Approximating L^2 -invariants by their finite-dimensional analogues. *Geom. Funct. Anal.*, 4(4):455–481, 1994.

W. Lück.

*L*²-Betti numbers of mapping tori and groups. *Topology*, 33(2):203–214, 1994.

70p010gy; 00(2).200 21

W. Lück. L²-Invariants: Theory and Applications to Geometry and K-Theory, volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2002.

T. Schick.

Integrality of L^2 -Betti numbers. Math. Ann., 317(4):727–750, 2000.